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Abstract

Feedback control laws for controlling multiple unmanned surface ve-
hilces in arbitrary formations are proposed. The presented formation con-
trol method uses only local sensor-based information. The method of input-
output linearization has been used to exponentially stabilize the relative
distance and orientation of neighboring vehicles with a three-degree-of-

freedom dynamic model. It is shown that the internal dynamics of the
system is also stable. The use of these control laws is demonstrated by
computer simulations. These controllers can be utilized to control an ar-
bitrarily large number of unmanned vehicles moving in very general for-
mations.

1 Introduction

During the last several years, researchers have investigated the formation con-
trol problemi for different type of vehicles, including indoor mobile robots, out-
door ground vehicles, aerial vehicles, and underwater amd surface vehicles. The
robotic research literature are richer in this regard. Researchers of this field
have used kinematic models of holonoinic robots and proposed feedback con-
trol laws to control the group of robots such that they capture/enclose a target
by making troop formations [1]. In this method, the robots do not maintain
a predefined formation during the motion. They change their formation au-
tonornously to surround a target. Other researchers in the robotics field have
implemented a set of elementary behaviors (obstacle avoidance and forrnation
maintaining behaviors) to control tearr formations. They have designed a fuzzy
controller based on holonomnic kinematic models for each behavior. The overall
response of the robot was the weighted superposition of each behavior [2].
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Also, investigators have considered three sets of geometric parameters to
describe the configuration of a robot team. One set defines the gross position
of a lead robot, a second set describes the relative positions of the robots, and
a third set determines the local relations of the neighboring robots. They have
used a nonholonomic kinematic model for the robots and designed nonlinear
feedback controllers [3].

Researchers have recently designed decentralized feedback laws for a forma-
tion of unmanned aerial vehicles (UAVs). They have treated the dynamic model
of the formation structure as an interconnected system with overlapping subsys-
temns. They have designed a static state feedback controller for each subsystemn
based oil their perturbed nominal dynamics [4].

Some researchers have considered the formation control problem for un-
manned underwater vehicles (UUVs). They have presented a biologically in-
spired, decentralized methodology for moving a loose formation of UUVs with
the goal of minimizing outside guidance [5]. Others have proposed al integrated
acoustic navigation system and coordination control maneuver for a formation
of three UUVs and one surface craft [6].

Naval researchers have investigated decentralized formation control schemes
for a fleet of vessels with a small amount of intervessel conununication [7].
In their approach, each vessel maintains its position in the formation relative
to a Formation Reference Point, which follows a predefined path. They have
constructed an individual parametrized path for each vessel so that when the
parametrization variables are synchronized, the vessels are in formation.

In the current paper, the problem of control and coordination for inany
unmanned surface vehicles moving in formation is investigated. The overall
Inotion plan for a single unmanned lead vehicle, which can be a virtual vehicle,
is assumed. The dynamic models of the vehicles are considered for designing
the controllers. It consists of the surge, sway, and yaw degrees of freedom. It is
assumed that two independent actuators drive the vehicle.

Two nonlinear decentralized schemes are designed for feedback control within
a formation. In the first scheme, one vehicle controls its relative distance and
orientation with respect to a neighboring vehicle. In the second schemne, a vehicle
mnaintains its position in the formation by maintaining specified distances fromn
two neighboring vehicles, or from one vehicle and an obstacle. The idea of
controlling relative distances is adapted from robotics research [3].

The proposed control schelnes use only local sensor-based information. Feed-
back linearization method is used and it is shown that the relative distances and
orientations of the vehicles are exponentially stabilized. The stability of zero
dynanics of the system is also discussed. These control laws have the advantage
of providing easily computable, real-time feedback control, with provable per-
formnance for the entire system. Numerical simulations are presented to demnon-
strate the efficiency of these techniques.
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Figure 1: A 3 DOF Dynamic Model of a Vehicle

2 Dynamics of a Surface Vehicle

This sections presents the dynamic model of a vehicle, shown in Fig. 1. Three
degrees of freedom, surge, sway, and yaw, are assumed for each vehicle. u, v,
and r, denote the speeds of these DOFs in local coordinate system respectively.
A propeller and a rudder, or two independent thrusters cart provide the driving
force and steering torque for the system. The force mid torque are denoted by
F and T respectively. Note that in each case only two independent actuations
are available for each 3 DOF vehicle. Therefore the vehicle is an underactuated
dynamnic system, arid the stability of its zero dynamics becomes a concern.

It has been shown that with the assumptions of constant inertia, ant elliptical
vehicle body, negligible higher order darnping terms, and simplification of the
hydrodynamics, the following equations describe the dynamnics of the vehicle in
the local coordinate system [8].

UflllUi - 7T2.2V + d,1u = F

m12 2'b + mn11 ur + d22v = 0 (1)

U13 3i + (in 22 - mtn)luv + d 3 3r = T

mijj's are the niass and moment of inertia of the vehicles including the hyro-
dynamic added mass amid moment of inertia, and dij's are the damping coef-
ficients. One can use the kinematic relations between the speeds in local and
global coordinate systems and obtain the dynamic equations in termis of the
global coordinates as:

= =• (h + F cO)
1 • ( + F s8) (2)

=1,- (fo +T)
where c = cos, s = sinl, anid,

f. = m,.d. 2v sO - dju cO + O(v cO - m71ru sO)rfod

f= -M,.d 2 2v cO - dju sO + O(v sO + n,.'u cO)mrd (3)

fo = -I-dUV - d330
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and,

'ftld =•TT122 - 7T11I

In 2 2

Equations (2) arid (3) describe the dynamics of the vehicles in termns of the
global coordinate components.

3 Formation Control Schemes

The bulk motion of the gToup of vehciles call be characterized by trajectory
planning and obstacle avoidance algorithms, for example, the method of artificial
potential fields [9]. It is assumed that a hypothetical vehicle as a group leader
adapts the bulk motion of the group as its planned trajectory ard other vehicles
of the group follow either the hypothetical group leader or their neighboring
vehicles. Therefore, our attention is focused on controlling the internal geometry
of the formation. Two types of feedback controllers are designed for controlling
the internal geometry.

The first feedback controller is called the 1 - 0 controller. It controls the
relative distance and view angle of a vehicle with respect to a neighboring ve-
hicle. This situation is applicable to all formations in which each vehicle sees
one neighbor. Thus it can be used for vehicles mnarching in a single file or at an
edge of the formation geometry.

Note that the I - b controller alone can not define a general formation.
When a vehicle is constrained by more than one neighbor (or obstacle) in the
formation, a second feedback controller is needed to control the distances of the
vehicle f'orn two neighboring vehicles, or from one vehicle and an obstacle. This
controller is called the 1 - I controller.

These two local controllers are necessary to define a general formation. Usu-
ally the vehicles at an edge of the formation geometry control their distance
with their immediate front vehicle using the 1 - V) controller. The other vehicles
control their distances to their immediate front and side vehicles using the I - I
controller. This is necessary so that a vehicle can also avoid its side vehicle.
Detailed examples are presented in the simulation section of this paper.

3.1 Design of the 1 - 0 controller

In Fig. 2, a system of two neighboring vehicles in the formation is shown. The
vehicles are separated by a distance 112 between the center of mass of vehicle
1 arid an arbitrary point, p, on vehicle 2. The arbitrary point has a distance d
with the center of imass. Note that the vehicles are not physically coupled in any
way. A feedback control law for control inputs F.2 and T2 miust be determined to
control vehicle 2 such that the desired distance Id and view angle 0d2 to vehicle
1 are maintained. Therefore the outputs of the control system are: [112,02-].

The state variables that define the dynamics of vehicle 2 are: [x2 , Y2, 02]. The
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Figure 2: 1 - V) Control Configuration

state variable-output relations of this control system are obtained by writing
the kinematics equation for I - 0 configuration.

Acceleration of point p on vehicle 2 can be written in two ways, once with
respect to center of miass of vehicle 1 and once with respect to that of vehicle 2.
The resulting equations are solved for the highest derivatives of the outputs 112
and 0 12 to obtain state variable-output relations.

112 = (W2 - 91) sU0 + (P2 - ýi1) cao + dO2 s81

-d2. c-YI + 112 0 (4)

212 = '•[(92 - Y1) caO - (P2 - xl) sao + dO 2 c71

+d 2 sTy - 2i126o - 11291] (5)

where

00 = 01 + Vb12

71 = 01 + 01 2 - 02

The goal is finding a control law for the two inputs [F2 , T2] to stabilize the
outputs. Therefore, the input-output equations are first obtained by writing
the dynamic equations (2) for vehicle 2 and substituting the results into the
kinematics equations (4) and (5).

T12= [h + 1F 2 c-+ 1+ T 2d s7i] (6)

2 --12 = - 1 F2 s'y + -1--T2d cjy] (7)
112 M1 Mrl 133 ]
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where

f .= .(f ca•0 + fy sao) + 1-fod s-yl - 'Xl cak - V/i sao

-d2• C71 + l12 0

f = ,-(-f:So + f, cao) + 1, fod c-yl + :1 sao - ýV cao

+d62 s-yl - 2il2&O - 112#1

Input-output linearization is used to design a controller based on the input-
output equations (6) and (7). In this method, ai asymptotically stable second
order error dynamnics is assumed (Ai > 0):

Ei + 2Aiei + A2ej = 0 i =1, 2 (8)

where el and e2 are the output errors defined as:

el = 112 ~12 e2 = 012 12 (9)

Now, the control laws are derived by combining Eqns. (8) and (9), substituting
the results into input-output equations (6) anld (7), and solving for inputs F2
and T2 .

F2 =n 1rti[(Tlj2 - 2A, 61 - A 2el _ fl) C'yl

- (112(•b - 2A 2 - A2• 2) - fO) s'Y] (10)

T2  d 11[(,2 - 2A1<l - l- fi) sy

(112 ( 142 - 2V 2 - A2e2 ) - f,) c'ylJ (11)

The distance 112 and view angle ?P 12 in the 1 - V configuration shown in Fig. 2
asymptotically converge to their corresponding desired values, because the con-
trol laws (10) and (11) guarantee that errors vanish as time approaches infinity.
But 92, the orientation of vehicle 2, is not directly controlled. The dynamics
of this degree of freedom when others have been stabilized is referred to as the
zero dynamics of the system and its stability has to be investigated separately.

3.2 Zero dynamics stability for the 1 - 4 controller

In this section, the stability of the zero dynamics is proven by considering the
relation between the controlled outputs and the orientation of vehicle 2. This
relation is obtained by the velocity analysis of the 1 - V/ configuration shown ill
Fig. 2 as:

i12 = - 'l ) S(O + (ý2 -1 l) cao + dO, s-Y] (12)

12 -I- z[W2 - M) ca - (32 - :E) Sa0 + A C'Y

-11261] (13)
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Note that 112= l12, V)12 i 'd2,112 = 0, and 412 = 0, after the controlled out-
puts have reached the steady state. These conditions are applied to Eqns. (12)
and (13) and the results are solved for .2:

92 = 1 (-v2 + ýI c92- 2 +- l c0 1 ) (14)

where V2 = Y2 C0 2 - i 2 s02 is the lateral velocity of vehicle 2. Equation (14)
describes the zero dynamics of the I - 7P controller. This equation is used to
analyze the stability of zero dynamnics in cases of circular and linear mnotions.

3.2.1 Circular motion

First, the stability of 02 is analyzed when vehicle 1 has a circular motion with
constant linear speed s, = (u2 + v2) 0

.1. For a circular motion, the orientation
of vehicle 1 is 01 = wt + 01o, where 010 is its initial orientation 1. The velocity
coniponents of the mnotion of vehicle 1 become:

S-= Slc 1 co -= 1 1  (15)

Equation (15) is substituted in Eqn. (14) to obtain:

62 = I(-V 2 + s1 s(01 - 02) + l12w c(0 1 -92 + 12) (16)

This cami be further manipulated to obtain the simpler form:
1

62 = 0( c(01 - 02 + 32) - v 2 ) (17)

where fi and 02 are constants.

[31 =&, IS- 2wSn/' 2)2 + (lI2c4 e/I 1 2

/2 = arctan ( 81s Idw .Sd

A change of variable to 512 = 01 - 02 is miade and the following differential
equation is obtained:

612 = + (v+od - 1 c(612 - [32 )) (18)

Note that vehicle 1 is moving on a circle and vehicle 2 is maintaining a constant
distance with vehicle 1. Therefore, vehicle 2 is also moving on a circle. By
observing the dyniamic equations (1), one can conclude that for such a mmotion
V2 is constant. Therefore all parameters in Eqn. (18) are constants, and one can
easily show the asymptotic stability of the following fixed equilibrium point.

512 = arccos (wdv + #2 (19)

Thus the imotion of vehicle 2 will locally converge to the equilibrium trajectory:

0= 01 - 62 (20)
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3.2.2 Linear motion

The stability of zero dynamics is also analyzed when vehicle 1 moves on a
straight line. In this case, the velocity components of vehicle 1 become:

L±1 = Ul Colo r l U= uslo 10 = 0 (21)

where ul is the linear velocity and 010 is the orientation of vehicle 1. Substituting
Eqns. (21) into Eqn. (14) and simplifying results in:

02 = (-v 2 + u 1 s(01 - 02)) (22)

One Carl obtain the following differential equation with a change of variable to

612 = 010 - 02:

612 = d(V2 - U1 sS1 2) (23)

Since vehicle 1 is moving on a line and vehicle 2 is maintaining a constant
distance with vehicle 1, vehicle 2 is also moving oil a line. If the dynamic
equations (1) are simplified with this assumption, it can be shown that for a
linear inotion v2 is zero. Thus, all the pararmieters in Eqn. (18) are constant,
and linearization of (18) can easily show the asymptotic stability of the following
constant equilibriumni point.

SI' = 0 (24)

Thus the inotion of the vehicles will locally converge to the equilibrium trajec-
tory:

2 = 010 (25)

3.3 Design of the 1 - 1 controller

In Fig. 3, a system of three vehicles is shown. A controller miust be designed to
stabilize the distance of vehicle 3 from the two neighboring vehicles. Distances
are mieasured from the centers of mass of vehicles 1 and 2 to an arbitrary point
oni vehicle 3, which is offset by d fromn its center of mnass. The feedback controller
inputs axe the driving force and the steering torque of vehicle 3, F. and T3. The
desired distances ld3 and l23 to vehicles 1 amid 2, respectively, are to be main-
tained. Thus the outputs of the control system are: [113,123]. The state variables
that define the dynamics of vehicle 3 are: [x3 , y3, 09]. The state variable-output
relations of this control system are obtained by writing the kinematics equation
for the I - I configuration.

The same procedure of writing the acceleration kinenmatic equations for point
p that was introduced in 1 - 0 control carl be repeated here. These kinemnatic
equations can be solved for the second-order derivative of 13 amid 123. This gives
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the following state variable-output equations.

i13 = (93 - 91) Sal + (:i3 - :i1) cd 1 + d63 s8,
-aO• cyr + 1132 (26)

=33 (V3 - iM2) sa2 + (:i3 - :W) M2 + dOA S73

-d9• cy3 + 123 2 (27)

where

aL, = 0 1 +i'013  72=+01+013-03

aU = 62 + 0 23  Y3 =02+0 23-03

Since the goal is finding a control law for the two inputs [F3 , T 3] to stabilize the
outputs, the input-output equations are needed. These equations are obtained
by writing the dynamic equations (2) for vehicle 3 and substituting the results
into the kinematics equations (26) and (27).

T,'3 = fi + +,1F 3 c'y2 + 7,-;L33Tsd s72 (28)

i23 = f2 + 1-F3 c'y3 + ' T3 d s53 (29)
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where

fl = ca 1 + f, Sil) + 13 fod s'y2 -:i cal - P, sal
-dO2 c'y2 + l13 &2

f2 1
1f1 cQ2 + fy sa2 + -1 --fod sy3 - :i2 c(12 - iJ2 sa2

-d3 c3 + 123 2

A controller is designed for input-output equations (28) and (29) via input-
output linearization. The output errors are defined as

el = 113 l 3  e 2 = 123 - 2 3  (30)

and an asymptotically stable second order error dynamics is assumed (Ai > 0):

6i + 2,A + ,•ei = 0 i = 1,2 (31)

Now, the control laws are derived by combining Eqns. (30) and (31), substituting
the results into input-output equations (28) and (29), and solving for inputs F3

and T3 .

F3 = [(slt - 2A16 1 - Ale1 - fl) sY3
s(a2 - al)0.d-262A2

- (1d - 2A23 2 - 2.e 2 - f2) sY2] (32)

T3 nU3 3  d 2 fcd

= d S( - a)[-_(13 - 2A,61 - Ale, - A) cy

+ (i23 - 2A2 62 - A.e2 - f2) cy2] (33)

The control laws (32) ard (33) guarantee that the distance 113 and 123 il the 1 -
I configuration shown in Fig. 3 asymptotically converge to their corresponding
desired values. But the orientation of vehicle 3, 03 , is not directly controlled and
its response after the outputs have converged (the zero dynamnics of the system)
has to be investigated.

3.4 Zero dynamics stability for the I - 1 controller

In this section, the stability of the zero dynamics is proven. The velocity analysis
of vehicles 1 and 3 in 1 - I configuration results in the following kinnemnatic
equations, which describe the relation between the controlled output 113, the
view angle V1k3, and the orientation of vehicle 3.

613= [(3 - Y1) Sal + (LE3 - ±l) cal + d93 s7 2] (34)

=13 -!-[([ - n1) cal - (L±i - h1 ) sal + d63 cr2

-113011 (35)
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After the controlled outputs have reached the equilibrium, 113 = Id3, 123 = 1313 23 =12

i13 = 0, and i23 = 0. Note that these equilibrium conditions also imply that

¢'13 becomes stabilized at some value V)1"3 and 013 = 0. These conditions are
applied to (34) anid (35) and the results are solved for 03:

03 = -1 (-V3 +'i c03 - :i sO3 + Id c2 (36)

where V3 = Y3 c0 3 - X3 803 is the lateral velocity of vehicle 3. Equation (36)
describes the zero dynamics of the I - 1 control system. This equation is very
similar to Eqn. (14) in nature. Thus the procedure discussed about the stability
of 1 - 4 controller can be repeated. It caw be shown that for a circular motion of
the group of three vehicles with constant speed, where 01 = Wt + 0 1o and 01 = W,
the orientation of vehicle 3 converges to the following equilibrium trajectory:

03 = Ol - i3 (37)

where

613 = arccos 03d (38)

and

03= I/(SI - llb3w s"' 3)' + (M&3w c0bN)2

/34 = arctan ($ d SVds)1

Note that v3 is constant for a circular motion, and sl is the constant linear
velocity of vehicle 1. Therefore the offset 5i3 is constant. Also with a similar
procedure as was shown for the 1 - 7P controller, it can be shown that when
vehicles 1 anid 2 are moving on two parallel straight lines with angles 010 = 020
with respect to the x-axis, the orientation of vehicle 3 converges to the following
equilibrium trajectory:

03 = 010 = 02U (39)

4 Simulation Results

Numerical simulations show the effectiveness of the controller design arid the
accuracy of the stability analysis. Three simulation examples are presented in
this section. In these simulations, the vehicles are assumed to be identical. The
controller parameters, A1 arid A2, are selected to be 0.4 for all 1 - 4 arid I - 1
controllers. The numerical values of the dynarmic parameters of the vehicles are
as follows [10]:

'trll = 200 kg 7r 2 2 = 250 kg

nm33 = 80 kg.nn2  dil = 70 kg/s

d22 = 100 kg/s d33 = 50 kg.mi 2/s

11
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4.1 1 - 4 controller

Figure 4 shows two vehicles, where vehicle 2 is commanded to keep a specified
distance, ld[2 = 2.0 meters, and view angle, OA = 7r/2 rad, from vehicle 1.
Vehicle 1 is moving on a circle with a radius of 15 in with a constant linear
velocity of 9.42 m/s. It is seen that vehicle 2 is far from the specified formation
at the beginning of the motion, but it maintains the formation parameters after
a while. The orientation of vehicle 2 is shown by the small line segments.
Note that due to the dynamics of the vehicle, the orientation is not necessarily
tangent to the path, but it is stabilized. The response of the controller outputs,
[112,'012], is shown in Fig. 5. As is expected from Eqn. (8), the error dynamnics is
asymptotically stable and the controller outputs converge to their corresponding
desired values asymptotically. Figure 6 shows the difference in the orientation
of the two vehicles, J12. This difference becomes a constant value as dictated
by Eqn. (20).

4.2 1 - 1 controller

Three vehicles are shown in Fig. 7. Vehicle 3 is commanded to keep specified
distances, 1' = 4.0 and ld = 4.0 meters, from vehciles 1 arid 2, respectively.
vehciles 1 and 2 are moving on a straight line at a constant linear velocity of
1.4 in/s. Note that vehcile 3 is not in the specified formation at the beginning
of the motion. The figure shows that it maintains the formation parameters
after some time. The small line segments show the orientation of vehicle 3.
It cian be seen that the orientation error is stabilized at zero. The response
of the controller outputs, [113,123], is shown in Fig. 8. The error dynamics is
asymptotically stable, as is expected from Eqn. (31). The difference in the
orientation of vehcile 1 and 3, J13, is shown in Fig. 9. This difference becomes
zero as dictated by Eqn. (39).
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Vehicle Controller Follows
1 - a predefined trajectory
2 1 - V vehicle 1
3 1 - I vehicles 1 & 2
4 1 - 7P vehicle 2
5 1 - I vehicles3 & 4
6 1 - I vehicles 3 & 5

Table 1: Formation Structure Setup

4.3 General formation control

The designed controllers are integrated to control more general formations. This
section presents the application of the I - V) and 1 - 1 controllers with multiple
vehicles. Figure 10 shows six vehicles that are initially in a rectangular for-
mnation. Table 1 summarizes the formation control structure. The satne six
vehicles are shown in Fig. 11 in a triangular formation. Note that the formation
structure that is defined in Table 1 is still applicable for this formation. The
only difference between the two formations is the desired values of the formation
parameters [1 , V;, ] and [1l', l.d] for 1 - 7P and I - I controllers respectively. Two
formation change scenarios are presented based on this formation structure.

In the first simulation, it is assumed that vehicle 1 is commanded to imove on
a parabola by an external trajectory planning algorithm. The group is initially
in a rectangular formation similar to Fig. 10, and is commanded to form a
triangular formation as shown in Fig. 11. This is equivalent to changing the
desired values of the formation paramneters. Figure 12 shows the motion of the
six vehicles during this maneuver. The vehicles are at their initial positions at
lower left corner of the figure. By applying the local controllers, the vehicles
successfully change their foruiation and direction of motion.

In the second simulation, vehicle 1 is moving on a half-sine trajectory that
is determined by an external trajectory planning algorithmn. The group has a
triangular formation as shown in Fig. 11 at the start of the motion. It is assumed
that the group has to formmi a rectangular formation similar to the one shown in
Fig. 10. The equivalent desired values of the formation parameters are changed
accordingly. The motion of the six vehicles during this maneuver is shown in
Fig. 13. Once again the local controllers successfully change the formation of
the group.

5 Conclusions

The formnation control of an arbitrary number of vehicles was investigated. Two
local control laws were introduced that control the relative positions of neigh-
boring vehicles based on sensor information. Since the control schemes are local,
each vehicle has to have information about only one or two of its neighbors, de-
pending on the location of the vehicle in the formation. The dynamic miodels of
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the vehicles were used to design the controllers. Since the vehicles are underac-
tuated, the stability of the internal dynamics of the system (orientation of the
vehicle) had to be investigated. It was shown that for circular and linear motion
of the formation, internal dynamics of the vehicles is asymptotically stable. The
effectiveness of the control algorithir was shown by numerical simulations.

Sensitivity to parameter uncertainty, local and global obstacle avoidance,
autonomous formation planning, arid robustness to failure of a group member
are interesting topics that are being investigated. Also, an experimental setup
is being designed mid built at Center for Nonlinear Dynamics arid Control,
Villarova University.

References

[1] Yamaguchi, H., 1999. "Cooperative hunting behavior by mobile-robot
troops". Ilitelational Journal of Robotics Research, 18(9), pp. 931-940.

[2] Dumnan, H., and Hu, H., 2001. "United we stand, divided we fall: Teamn
formation in multiple robot applications". Jounnal of Robotic Systems,
16(4), pp. 153-161.

[3] Desai, J. P., 2002. "A graph theoretic approach for modeling mobile robot
teamn formations". Intenmational Jounnal of Robotics and Automation,
19(11), pp. 511-525.

[4] Stipanovic, D. M., Inalhan, G., Teo, R., aid Tomlin, C. J., 2004. "Decen-
tralized overlapping control of a formation of unmanned aerial vehicles".
Automatica, 40(8), pp. 1285-1296.

[5] McDowell, P., Cheri, J., and Bourgeois, B., 2002. "UUV teams, control
from a biological perspective". In The IEEE Oceans Conference Record,
Vol. 1, pp. 331-337.

[6] Martins, A., Alineida, J. M., and Silva, E., 2003. "Coordinated maneuver
for gradient search using multiple AUVs". In The IEEE Oceans Conference
Record, Vol. 1, pp. 347-352.

[7] Ihue, I. F., Skjetne, R., aid Fossen, T. I., 2004. "Nonlinear formation
control of marine craft with experimental results". In Proceedings of the
IEEE Conference on Decision arid Control, Vol. 1, pp. 680-685.

[8] Fossen, T. I., 1994. Guidance and Control of Ocean Vehicles. John Wiley
& Sons.

[9] Fahimi, F., Nataraj, C., and Ashrafiuorn, H., 2004. Real time obstacle
avoidance for groups of mobile robots. Submitted to Journal of Robotic
Systems for possible publication.

[10] Rayhanoglu, M., 1997. "Exponential stabilization of an underactuated
autonolnous surface vessel". Automatica, 33(6), pp. 2249-2254.

17



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

22-08-2005 Final Technical Report I June 1, 2004 - May 31, 2005
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Real Time Trajectory Planning for Groups of Unmanned Vehicles

5b. GRANT NUMBER

N00014-04-1-0637

5c. PROGRAM ELEMENT NUMBER

04PRI 1370-00

6. AUTHOR(S) 5d. PROJECT NUMBER

Farbod Fahimi

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Center for Nonlinear and Control, Department of Mechanical Engineering, Villanova REPORT NUMBER

University, 800 Lancaster Ave., Villanova, PA 19085, USA N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is Unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Feedback control laws for controlling multiple unmanned surface vehicles in arbitrary formations are proposed. The presented
formation control method uses only local sensor-based information. The method of input-output linearization is used to
exponentially stabilize the relative distance and orientation of neighboring vehicles with a three-degree-of-freedom dynamic model.
It is shown that the internal dynamics of the system is also stable. The use of these control laws are demonstrated by computer
simulations. These controllers can be utilized to control the an arbitrary large number of unmanned surface vehicles in very general
formations.

15. SUBJECT TERMS

Unmanned surface vehicles, Formation Control, Decentralized control, Input-output linearization

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
a. REPORT I b. ABSTRACT c. THIS PAGE ABSTRACT OF Farbod Fahimi

PAGES
UU UU LT SAR 17 19b. TELEPHONE NUMBER (Include area code)

6105194949

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18


